Participation of Neighbouring Transition-metal in the Nucleophilic C-Si Cleavage of π -C₅H₅(CO)₃MoCH₂SiMe₃: Possible Formation of an Anionic **Transition-metal Carbene Intermediate**

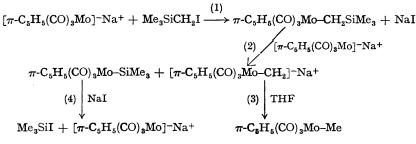
By M. R. Collier, B. M. KINGSTON, and M. F. LAPPERT*

(School of Molecular Sciences, University of Sussex, Brighton, Sussex BN1 9QJ)

Summary The formation of π -C₅H₅(CO)₃M⁴Me (M⁴ = Mo or W), under mild conditions from $[\pi - C_5 H_5(CO)_3 M^1] - Na^+$ and $Me_{3}M^{2}CH_{2}I$ ($M^{2} = Si \text{ or } Sn$), is shown to proceed via attack of $[\pi-C_5H_5(CO)_3M^1]^-$ upon $\pi-C_5H_5(CO)_3M^1CH_2$ - M^2Me_3 ; the effect of the transition-metal in labilising the C-M² bond is attributed to the stability of $[\pi$ -C₅H₅- $(CO)_{3}M^{1}CH_{2}]^{-}$.

RECENTLY a new class of σ -alkyl transition-metal complex has been described in which the organic ligand (R⁻) may be regarded as a carbanion in which one or more α -H atom(s) has been replaced by an organometallic or t-alkyl fragment.¹ Most widely studied have been the trimethylsilylmethyl derivatives ($R = Me_3SiCH_2$).^{1,2} Such complexes often have high (compared with normal σ -alkyls) thermal and chemical stability, e.g., in ZrR¹ and CrR².

We now report experiments which arose initially from an attempted synthesis of π -C₅H₅(CO)₃Mo-CH₂SiMe₃. The corresponding Mo-Me derivative is among the more common metal σ -alkyls.


The reaction between $[\pi-C_5H_5(CO)_3MO]^-Na^+$ and Me_3^- SiCH₂I in tetrahydrofuran gave π -C₅H₅(CO)₃Mo-Me as the principal product and only a trace (ca. 5%) of π -C₅H₅(CO)₃-Mo-CH₂SiMe₃. The reaction was 90% complete (i.r.) after 5.5 h at 20°. Repeating the same experiment, but now with Me₃SiCHDI, afforded isotopically pure³ (n.m.r.) π - $C_5H_5(CO)_3Mo-CH_2D$; thus, a methyl migration pathway to π -C₅H₅(CO)₃Mo–Me from π -C₅H₅(CO)₃Mo–CH₂SiMe₃ was excluded. It was next shown that π -C₅H₅(CO)₃Mo-CH₂-SiMe₃ was a precursor of π -C₅H₅(CO)₃Mo-Me in this system (see Scheme) in that the latter compound was formed from the former by its reaction with $[\pi-C_5H_5(CO)_3-$ Mo]-Na⁺. Thus the components (1) and (2) of the reaction scheme below were established by independent experiments. while $(3)^4$ and $(4)^5$ have precedents.

Reaction (2) is remarkable in that the C-Si bond is cleaved under exceedingly mild conditions. Normally the C-Si bond is very stable and attack by nucleophiles under forcing conditions is only possible when strongly electronwithdrawing groups are attached to carbon.⁶ As it is established that the group π -C₅H₅(CO)₃Mo-CH₂- is strongly electron-releasing,⁷ it is clear that a new mechanism must apply. We suggest that the large neighbouring-group effect exercised by the transition-metal moiety in reaction (2) is explained by the significantly greater thermodynamic stability of the anion $[\pi-C_5H_5(CO)_3Mo-CH_2]^-$ compared with $[H-CH_2]^-$. Such stabilisation could arise from extensive delocalisation of charge in $[\pi-C_5H_5(CO)_3Mo-CH_2]^-$; which thus has more the character of an anionic transitionmetal carbene complex than of a carbanion. Complementary cationic carbene complexes have been invoked.^{8,9}

The intervention of an anionic carbene complex may similarly account for the formation⁸ in low yield of π -C₅H₅- $(CO)_{3}W-CH_{2}Me$ from $[\pi-C_{5}H_{5}(CO)_{3}W]$ -Na⁺ and MeCHClO-Me. Another consequence of our postulate is the prediction that the removal of an α -proton from other transition-metal σ -alkyls is relatively simple, *i.e.*, that the compounds have significant Brønsted acidity.

C-Si or C-Sn cleavage reactions under similarly mild reaction conditions have been observed inter alia in the following systems: $[\pi-C_5H_5(CO)_3W]$ -Na+/Me₃SiCH₂I, $[\pi-C_5H_5(CO_3)MO]^-Na^+/Me_3SnCH_2I$ and $[\pi-C_5H_5(CO)_2Fe]^-$ -Na⁺/Me₃SnCH₂I. Relative proportions in these reactions of the metal- CH_2MMe_3 (M = Si or Sn) and metal-Me products may in part be related to variations¹⁰ in the nucleophilicities of the appropriate transition-metal anions.

We thank S.R.C. for the award of studentships (to M.R.C. and B.M.K.).

(Received, August 13th, 1970; Com. 1364.)

- ¹ M. R. Collier, M. F. Lappert, and M. M. Truelock, J. Organometallic Chem., 1970, 25, C36. ² G. Yagupsky, W. Mowat, A. Shortland, and G. Wilkinson, Chem. Comm., 1970, 1369.

- ⁹G. Yagupsky, W. Mowat, A. Shortland, and G. Winkissh, *Chem. Comm.*, 1970, 1369.
 ⁹J. D. Duncan, J. C. Green, M. L. H. Green, and K. A. McLauchlan, *Chem. Comm.*, 1968, 721.
 ⁴E. Grovenstein and Yao-Ming Cheng, *Chem. Comm.*, 1970, 101; see also J. M. Mallan and R. L. Bebb, *Chem. Rev.*, 1969, 69, 693.
 ⁶ A. Carrick and F. Glockling, *J. Chem. Soc.* (A), 1968, 913; J. M. Burlitch, *J. Amer. Chem. Soc.*, 1969, 91, 4563.
 ⁶ J. L. Speier, *J. Amer. Chem. Soc.*, 1948, 70, 4142.
 ⁷ M. D. Johnson and N. Winterton, *J. Chem. Soc.* (A), 1970, 507.
 ⁸ M. L. H Green, M. Ishaq, and R. N. Whiteley, *J. Chem. Soc.* (A), 1967, 1508.
 ⁹ P. W. Jolly and R. Pettit, *J. Amer. Chem. Soc.*, 1966, 88, 5044.